table of common logarithms

This table is for integers in the range $-1. To find the common logarithm (that is, with base 10, the same base of our numeral system) for the desired $n$, look for the ten’s place digit (0 in the case of $-1) in the leftmost column and the one’s place digit in the topmost row. The intersection $x$ of that row and column thus gives $\log_{10}n$ to four or five decimal places.

$n$ 0 1 2 3 4 5 6 7 8 9
0 $-\infty$ 0.00000 0.30103 0.477121 0.60206 0.69897 0.778151 0.845098 0.90309 0.954243
1 1. 1.04139 1.07918 1.11394 1.14613 1.17609 1.20412 1.23045 1.25527 1.27875
2 1.30103 1.32222 1.34242 1.36173 1.38021 1.39794 1.41497 1.43136 1.44716 1.4624
3 1.47712 1.49136 1.50515 1.51851 1.53148 1.54407 1.5563 1.5682 1.57978 1.59106
4 1.60206 1.61278 1.62325 1.63347 1.64345 1.65321 1.66276 1.6721 1.68124 1.6902
5 1.69897 1.70757 1.716 1.72428 1.73239 1.74036 1.74819 1.75587 1.76343 1.77085
6 1.77815 1.78533 1.79239 1.79934 1.80618 1.81291 1.81954 1.82607 1.83251 1.83885
7 1.8451 1.85126 1.85733 1.86332 1.86923 1.87506 1.88081 1.88649 1.89209 1.89763
8 1.90309 1.90849 1.91381 1.91908 1.92428 1.92942 1.9345 1.93952 1.94448 1.94939
9 1.95424 1.95904 1.96379 1.96848 1.97313 1.97772 1.98227 1.98677 1.99123 1.99564
Title table of common logarithms TableOfCommonLogarithms 2013-03-22 18:08:50 2013-03-22 18:08:50 PrimeFan (13766) PrimeFan (13766) 4 PrimeFan (13766) Data Structure msc 01-08 msc 65A05 msc 26-00 msc 26A09